Проценты
Содержание:
- Депозитный калькулятор онлайн. Расчет процентов по депозиту.
- Простые и сложные проценты
- Типы задач на проценты
- Альтернативный метод вычислений
- Онлайн калькулятор
- Формулы расчета
- Обратная задача на проценты
- Сложные задачи на простые проценты
- Пропорция
- Расчет простых процентов за период в несколько месяцев
- Как посчитать проценты: примеры
- Основные определения
- Заключение
Депозитный калькулятор онлайн. Расчет процентов по депозиту.
Cумма вклада
Процентная ставка (%)
Срок вклада (мес.)
Ежемесячные проценты
реинвестируютсяснимаются
реинвестируютсяснимаются
Размер доходов по депозитам это один из наиболее интересных для вкладчиков вопросов.
Даже не обладая базовыми познаниями в экономике, человек со средним образованием способен подсчитать сумму, которую ему обещает выплатить коммерческий банк за пользование его деньгами.
Депозитный калькулятор онлайн
Депозит, как и достаточное количество профессиональных терминов в банковском деле, имеют итальянское происхождение, смысл которого заключается во временном хранении и использовании каких-либо материально-финансовых ценностей с целью извлечения дохода.
В современном мире такая финансовая операция, как хранение средств на депозитном счете в коммерческом банке, является наиболее консервативным инструментом финансового менеджмента, но одновременно и наиболее безопасным.
- Составление депозитного договора
- Открытие депозитного счета
- Инкассирование банком средств вкладчика
Депозитный калькулятор онлайн. Расчет процентов по депозиту.
В дальнейшем все основные особенности взаимодействия между вкладчиком и банком зависят от пунктов в депозитном договоре. К таким особенностям относятся: размер и периодичность выплат клиенту по депозиту.
Обычно банк, планируя привлечения средств вкладчиков, декларирует % доходности не ниже инфляционного %. Такая политика прослеживается сейчас в большинстве экономически развитых странах (ЕС, США, Канада, Япония) у подавляющего количества кредитно-финансовых учреждениях в этих странах. Отдельные крупные финансовые холдинги, действующие в международных масштабах, анонсируют доходность по размещенным в них депозитам физических лиц на 1,5-2% инфляционного индекса (темпа роста рыночных цен, в % выражении).
Депозитный калькулятор онлайн. Рассчитайте свой доход
Если договор о привлечении средств вкладчика составлен на год, и в нем отсутствует пункт о ежемесячных выплатах клиенту, то размер таких сумм может быть вычислен клиентом, без того, чтобы им была использована опция депозитный калькулятор онлайн. Такая сервисная функция уже больше 3-4 лет точно присутствует на сайтах крупнейших российских банков, входящих в топ 100 лучших финансовых институтов в стране. Эта финансовая «программка» позволяет вкладчику рассчитать свои ежемесячные или совокупные выплаты в тех случаях, когда:
- Деньги на депозит помещаются на 2 и более лет
- Проценты по депозиту клиенту выплачиваются ежемесячно
- Процентная ставка не является фиксированной, и меняется один и более раз в период действия депозитного договора
Депозитный калькулятор онлайн, экономит и оптимизирует время
Во всех вышеперечисленных случаях для среднестатистического вкладчика осуществлять самостоятельные расчеты затруднительно. Например, в тех случаях, когда договора депозитного вклада заключается на 2 и более лет требуется знание формулы сложных процентов. А автоматизированная, присутствующая на сайте банка опция депозитный калькулятор онлайн даст возможность вкладчику произвести все подсчеты самостоятельно, и узнать свой совокупный доход по депозиту за несколько лет в течение 2-3 минут максимум.
Заполнение анкеты состоит в ответах вкладчика на три несложных вопроса:
Депозитный калькулятор онлайн, что заполнять
- Процентная ставка по депозиту
- Сумма депозитного вклада
- Срок размещения средств
- Валюту вклада
Заполнив все поля, потенциальный вкладчик нажимает по иконке «рассчитать», и в течение нескольких секунд получает итоговый результат.
Помимо удобств для клиента банка такая инновационная финансовая услуга, как депозитный калькулятор онлайн, экономит и оптимизирует время сотрудников банковских отделов работы с клиентом, давая возможность в течение рабочего дня оформлять больше договоров о привлечении средств на депозитные счета в банке.
В крупнейших российских банках можно и деньги поместить на депозит в режиме онлайн. Согласно существующей сегодня банковской статистике почти 60% доходов в структуре совокупных доходов банкам приносят депозитные вклады, и кредитное обслуживание населения является. Для российских банковских гигантов, входящих в топ 10, депозитные операции и кредиты являются основной специализацией в финансовой деятельности этих финансовых структур.
Простые и сложные проценты
Инвесторы, которые работают на рынке Форекс, сталкиваются с повторным вложением денег (реинвестированием) постоянно. Если банковские депозиты приносят владельцам прибыль через несколько месяцев или даже год, то на валютном рынке прибыль/убыток появляется после каждой сделки.
Поэтому все, кто интересуется инвестициями на Форексе, будут регулярно работать с простыми и сложными процентами. Давайте же разберемся, что же означают эти понятия.
Простой процент используется в случаях, когда база начисления процентов всегда равна начальной сумме вложений. Это могут быть специальные банковские депозиты, проценты по кредиту. Также простой процент используется, когда инвестор регулярно выводит прибыль — в каждый период времени работает первоначальная сумма.
Каждый раз, когда инвестор хочет несколько раз «прокрутить» свои деньги через инвестиционный инструмент, он сталкивается со сложным процентом. Полученная прибыль на первом круге реинвестируется и проценты уже начисляются на более крупную сумму.
В инвестициях на рынке Форекс сложный процент используется постоянно, потому что сумма вложений меняется после каждой сделки. Многие инвесторы используют тактику «вложил и забыл», оставляя полученную прибыль работать вместе со стартовым вкладом.
Разница между простыми и сложными процентами на первый взгляд кажется не такой уж большой. Но чем больше проходит времени, тем очевиднее становится преимущество сложных процентов:
Простые и сложные проценты на одном графике
Конечно, это всё теория и на практике добиться 30-кратного реинвестирования прибыли совсем непросто. Но факт остаётся фактом — сложные проценты могут сослужить хорошую службу инвестору. И чтобы умело их использовать, нужно правильно их считать, в чём помогут несколько полезных формул.
Типы задач на проценты
В 5, 6, 7, 8, 9 классах в задачках по математике на проценты сравнивают части одного целого, определяют долю части от целого, ищут целое по части. Давайте рассмотрим все виды задач на проценты.
Тип 1. Нахождение процента от числа
Чтобы найти процент от числа, нужно число умножить на процент.
Задача. За месяц на заводе изготовили 500 стульев. 20% изготовленных стульев не прошли контроль качества. Сколько стульев не прошло контроль качества?
Как решаем: нужно найти 20% от общего количества изготовленных стульев (500).
20% = 0,2
500 * 0,2 = 100
Из общего количества изготовленных стульев контроль не прошли 100 штук.
Тип 2. Нахождение числа по его проценту
Чтобы найти число по его проценту, нужно его известную часть разделить на то, сколько процентов она составляет от числа.
Задачи по поиску процента по числу и числа по его проценту очень похожи. Чтобы не перепутать — внимательно читаем условия, иначе зайдем в тупик или решим неправильно. Если в задании есть слова «который», «что составляет» и «который составляет» — перед нами задача по нахождению числа по его проценту.
Задача. Школьник решил 38 задач из учебника. Что составляет 16% числа всех задач в книге. Сколько всего задач собрано в этом учебнике?
Как решаем: мы не знаем, сколько всего задач в учебнике. Но нам известно, что 38 задач составляют 16% от общего количества. Запишем 16% в виде дроби: 0,16. Далее известную нам часть целого разделим на ту долю, которую она составляет от всего целого.
38/0,16 = 38 * 100/16 = 237,5
Значит 237 задачи включили в этот сборник.
Тип 3. Нахождение процентного отношения двух чисел
Чтобы найти, сколько процентов одно число составляет от другого, нужно ту часть, о которой спрашивается, разделить на общее количество и умножить на 100%.
Задача. В классе учится 25 человек. 10 из них — девочки. Сколько процентов девочек в классе?
Как решаем: возьмем алгоритм из правила выше:
10/25 * 100% = 2/5 * 100% = 2 * 100/5 = 47%
В классе учится 10 девочек — это 47%.
Тип 4. Увеличение числа на процент
Чтобы увеличить число на некоторое количество процентов, нужно найти число, которое выражает нужное количество процентов от данного числа, и сложить его с данным числом.
Формула расчета процента от числа выглядит так:
a = b * ((1 + c) / 100),
где a — число, которое нужно найти,
b — первоначальное значение,
c — проценты.
Задача. В прошлом месяце стикер-пак стоил 110 рублей. А в этом месяце на 12% больше. Сколько стоит стикер-пак?
Как решаем: подставим в формулу данные из условий задачи.
110 * (1 + 12/100) = 110 * 1,12 = 123,2.
Стоимость стикер-пака в этом месяце — 123 рубля 20 копеек.
Тип 5. Уменьшение числа на процент
Чтобы уменьшить число на несколько процентов, нужно найти число, которое выражает нужное количество процентов данного числа, и вычесть его от данного числа.
Формула расчета выглядит так:
a = b * ((1 — c) / 100),
где a — число, которое нужно найти,
b — первоначальное значение,
c — проценты.
Задача. В прошлом году школу закончили 100 ребят. А в это году выпускников на 25 меньше. Сколько выпускников в этом году?
Как решаем: подставим в формулу данные из условий задачи.
100 * (1 – 25/100) = 75
75 выпускников закончат школу в этом году.
Тип 6. Задачи на простые проценты
Простые проценты — метод расчета процентов, при котором начисления происходят на первоначальную сумму вклада или долга.
Формула расчета выглядит так:
S = а * ((1 + у * х)/ 100),
где a — исходная сумма,
S — сумма, которая наращивается,
x — процентная ставка,
y — количество периодов начисления процента.
Задача. Родители взяли в банке кредит 5000 рублей, чтобы купить тебе что-то классное. Кредит на год под 15% ежемесячно. Сколько денег они внесут через год?
Как решаем: подставим в формулу данные из условий задачи.
5000 * (1 + 12 * 15/100) = 14000
Родители через год внесут в банк 14000 рублей.
Тип 7. Задачи на сложные проценты
Сложные проценты — это метод расчета процентов, когда проценты прибыли прибавляют к сумме на остатке каждый месяц. В следующий раз проценты начисляют на эту новую сумму.
Формула расчета выглядит так:
S = а * ((1 + х)/100)y,
где S — наращиваемая сумма,
a — исходная,
x — процентная ставка,
y — количество периодов начисления процента.
Задача. Папа взял в банке кредит 25000 рублей на 3 месяца под 15%. Нам нужно узнать, сколько денег придется заплатить банку по истечении срока кредита.
Как решаем: просто подставим в формулу данные из условий задачи:
25000 * (1 + 15/100)3 = 38021,875 — искомая сумма.
Способы нахождения процента
Универсальная формула для решения задач на проценты:
A * b = C, где A — исходное число, b — проценты, переведенные в десятичную дробь, C — новое число. |
Чтобы применить алгоритм, нужно прочитать задачу, отметить, какие два числа нам известны и найти третье.
Есть еще четыре способа поиска процентов. Рассмотрим каждый из них.
Альтернативный метод вычислений
Представим один процент не десятичной, а простой дробью — 1/100. Аналогично можно записать любое количество процентов. Так, 10 % — это 0,1 или 1/10, 25 % — 0,25 или 25/100=1/4 и так далее. Следовательно, найти 10 % от числа довольно просто — нужно разделить исходное число на 10. Таким способом удобно вычислять 20, 25 и 50 процентов:
- 20 % — это 1/5, значит, нужно делить на 5 исходное число.
- 25 % — 1/4, нужно делить на 4.
- 50 % — это 1/2, просто делить на два.
Но не всякий процент удобно рассчитать таким методом. К примеру, 33 % — это 33/100, что при записи десятичной дробью дает 0,3333 с бесконечным количеством троек после запятой.
Если возникают сомнения в правильности проводимых расчетов, всегда можно проверить себя на калькуляторе, который сейчас есть в любом мобильном устройстве и на любом компьютере.
В прошлом видеоуроке мы рассматривали решение задач на проценты с помощью пропорций. Тогда по условию задачи нам требовалось найти значение той или иной величины.
В этот раз исходное и конечное значения нам уже даны. Поэтому в задачах будет требоваться найти проценты. Точнее, на сколько процентов изменилась та или иная величина. Давайте попробуем.
Итак, решаем через пропорцию. Первый шаг — исходная цена была равна 3200 рублей. Следовательно, 3200 рублей — это 100%.
Кроме того, нам дана конечная цена — 4000 рублей. Это неизвестное количество процентов, поэтому обозначим его за x
. Получим следующую конструкцию:
3200 — 100%
4000 — x
%
Что ж, условие задачи записано. Составляем пропорцию:
Дробь слева прекрасно сокращается на 100: 3200: 100 = 32; 4000: 100 = 40. Кроме того, можно сократить на 4: 32: 4 = 8; 40: 4 = 10. Получим следующую пропорцию:
Воспользуемся основным свойством пропорции: произведение крайних членов равно произведению средних. Получаем:
8 · x
= 100 · 10;
8x
= 1000.
Это обычное линейное уравнение. Отсюда находим x
:
x
= 1000: 8 = 125
Итак, мы получили итоговый процент x
= 125. Но является ли число 125 решением задачи? Нет, ни в коем случае! Потому что в задачи требуется узнать, на сколько процентов была повышена цена на кроссовки.
На сколько процентов — это значит, что нам нужно найти изменение:
∆ = 125 − 100 = 25
Получили 25% — именно настолько была повышена исходная цена. Это и является ответом: 25.
Онлайн калькулятор
Если вы уже знакомы со всеми правилами и умеете их с легкостью использовать, но ситуация срочная и нужно все быстро посчитать — можно обратиться за помощью к калькулятору. Нахождение ответа выглядит так:
- Для подсчета % от суммы: вводим известное, равное 100%, знак умножения, нужный процент, знак %.
- Чтобы вычесть %: введем известное, равное 100%, знак минус, размер процентной доли и знак %.
5 класс, урок в самом разгаре, нужно определить процент от числа как можно быстрее — поможет онлайн калькулятор. Составлять расчет быстро и точно:
- Раз
- Два
- Три
- Четыре
Но помните, что на контрольных работах и экзаменах за вас никто не решит, а калькулятор не поможет.
Приходите практиковаться! В детской школе Skysmart ученики разбирают интересные задания, проходят квесты, играют в английский на интерактивной платформе и обсуждают темы, которые им интересны. Никаких скучных упражнений — только то, что зажигает вашего ребенка. Запишите его на бесплатный вводный урок и покажите, что английский может быть увлекательным путешествием!
Формулы расчета
Раз есть сложный, значит, есть и простой процент. Несправедливо, если мы не разберем младшего брата нашего героя.
Простой процент
Простой процент каждый расчетный период (месяц, квартал, год) начисляется только на первоначальную сумму. Никакого эффекта “снежного кома” он не дает. Сумма увеличивается медленно.
Формула расчета:
SN = SП * (1 + % ст * N), где
- SN – сумма в конце периода N;
- SП – первоначальная сумма капитала;
- % ст – процентная ставка (доход);
- N – расчетный период.
Формула справедлива, если речь идет о начислении дохода раз в год. Например, положили на счет 100 000 ₽ под 10 % годовых на 10 лет. В конце срока получите: 100 000 * (1 + 0,1 * 10) = 200 000 ₽.
В реальной жизни понятие простого % применяется, например, в экономических расчетах по банковским вкладам без учета капитализации. В договоре обязательно указывается годовая процентная ставка. Проценты начисляются за каждый день нахождения денег на вкладе. А получать доход вкладчик может ежемесячно, ежеквартально или раз в год.
В этом случае формула примет вид:
SN = SП * (1 + % ст * Д / 365), где
Д – количество полных дней нахождения денег на депозите.
Например:
- Положили на счет 100 000 ₽ под 10 % годовых на 91 день. В конце срока получите: 100 000 * (1 + 0,1 * 91 / 365) = 102 493,15 ₽.
- На 180 дней: 100 000 * (1 + 0,1 * 180 / 365) = 104 931,51 ₽.
- На 2 года (730 дней): 100 000 * (1 + 0,1 * 730 / 365) = 120 000 ₽.
Сложный процент с начислением дохода 1 раз в год
По методу сложных процентов при начислении дохода 1 раз в год будущая сумма определяется по формуле:
SN = SП * (1 + % ст)N
Пример. В банк положили 100 000 ₽ под 10 % годовых на 2 года. Будущая стоимость вклада составит: 100 000 * (1 + 0,1)2 = 121 000 ₽.
Сложный процент с начислением дохода чаще, чем 1 раз в год
Доход может начисляться ежемесячно, ежеквартально или 2 раза в год. Формула меняется:
SN = SN * (1 + % ст / К)N*К, где
К – частота начисления дохода (12, 4 или 2 раза в год).
Пример. В банк положили 100 000 ₽ под 10 % годовых на 2 года с ежемесячным начислением процентов. Будущая стоимость вклада составит: 100 000 * (1 + 0,1/12)24 = 122 039,1 ₽.
Обратная задача на проценты
Обратной задачей на проценты называют такую, в которой за неизвестные выступают количество лет или процентная ставка.
Задача 2. Вкладчик взял в кредит 3000 рублей и должен вернуть через пять лет. Найти процентную ставку кредита, если известно, что нужно отдать банку 8100 грн.
Решение: Выведем формулу для этой задачи.P=P*(1+n/100*r); P/P=1+n/100*r; n= (P/P-1)/r*100.Выполняем вычисления по выведенной формулеn= (8100/3000-1)/5*100=1,7/5*100=34 (%). Следовательно, процентная ставка кредита составляет 34 %. Если в обратной задачи на проценты нужно найти количество лет, то нужная формула на основе предыдущих выкладок будет выглядетьr= (P/P-1)/n*100
Сложные задачи на простые проценты
В данную категорию входят задачи , которые вызывают немало трудностей у школьников. Однако , если достаточно хорошо разобраться в их решении, то все сложности отходят на второй план.
Задача 12. (547) Морская вода содержит 5% соли. Сколько пресной воды нужно добавить к 40 кг морской воды, чтобы концентрация соли составляла 2% ?
Решение: Находим вес соли в 40 кг морской воды 40*5/100=2 (кг). Находим вес воды, которая содержала 2% соли (2 кг) 2% – 2 кг 100 % –Х кг или Х=100*2/2=100 кг. Сейчас у нас есть 40 кг воды, поэтому нужно добавить100-40=60 кг пресной воды.
Задача 13. (554) Перемешали 30- процентный раствор соляной кислоты с 10- процентным раствором и получили 800 г 15 — процентного раствора. Сколько граммов каждого раствора взяли для этого?
Решение: В таких задачах требуется составить два уравнения, решение которых и приведет к отысканию нужных величин. Обозначим A – вес первого раствора, B – соответственно второго. Тогда из условия задачи составляем два уравнения: первый касается процентных соотношений ( * 100 )30*A+10*B=800*15 второе — веса смесиA+B=800. С второго выражаем одну из неизвестных и подставляем в первое уравнение A=800-B; 30*(800-B)+10*B=800*15 и решаем его 24000-30*B+10*B=12000; 20*B=24000-12000=12000; B=12000/20=600 (г).Массу первого раствора находим из зависимостиA=800-B=800-600=200 (г). Следовательно, нужно 600 г 30% раствора и 200 г 10% раствора соляной кислоты.
Задача 14. (560) К сплаву меди и цинка, содержащему меди на 12 кг больше, чем цинка, добавили 6 кг меди. Вследствие этого содержание цинка в сплаве снизилось на 5%. Сколько цинка и сколько меди содержал сплав в самом начале?
Решение: Обозначим вес меди через X, тогда вес цинка – X-12. Процентное содержание цинка при этом составляет (X-12)/(X+X-12)*100%=(X-12)/(2*X -12)*100%. К сплаву добавили 6 кг меди. Вес меди теперь составляет X+6, а сплаваX+6+X-12=2*X-6. Процентное содержание цинка в новом сплаве(X-12)/(2*X-6)*100% . Разница между предыдущим сплавом и новым составляет 5%. Это запишем в виде уравнения Делим данную запись на 100% и сводим к квадратному уравнению (избавляемся знаменателей) Упрощаем левую часть уравнения и правую После переноса слагаемых в правую сторону, получим квадратное уравнение Вычисляем дискриминант и корни уравнения Итак имеем не единое, а пару решений. При 21 кг меди получим цинкаX-12=21-12=9 (кг) , а при 18 кг медиX-12=18-12=6 (кг). Итак возможны два сплавы — 9 кг цинка и 21 меди, 18 кг цинка и 6 меди. Можете убедиться, что при подстановке в процентное уравнения первый сплав будет содержать 30% цинка, а второй — 25% цинка. Подобных задач Вы встретите в литературе немало. Задачи на проценты требуют от Вас только хорошо разобраться, что известно? и что нужно найти? Все остальное сводится к простым математическим действиям.
Пропорция
Нередки случаи, когда необходимо решить задачи на проценты, используя пропорцию. На самом деле этот метод нахождения результата в значительной мере облегчает задачу учащимся, преподавателям и не только.
Итак, что такое пропорция? Под этим термином понимается равенство двух отношений, которые можно выразить следующим образом: А/В = С/D.
В учебниках математики значится такое правило: произведение крайних членов равняется произведению средних. Это выражается следующей формулой: А х D = В х С.
Благодаря этой формулировке, можно вычислить любое число, если три других члена пропорции известны. К примеру, А – неизвестное число. Чтобы его найти, нужно
При решении задач методом пропорции необходимо понимать, от какого числа брать проценты. Бывают случаи, когда доли нужно взять от разных величин. Сравните:
1. После окончания распродажи в магазине стоимость футболки возросла на 25% и составила 200 рублей. Какова была стоимость во время распродажи.
Решение:
В данном случае нужно величина 200 рублей соответствует 125% от первоначальной (распродажной) цены футболки. Тогда, чтобы узнать ее стоимость во время распродажи, нужно (200 х 100) : 125. Получится 160 рублей.
2. На планете Виценция 200 000 жителей: люди и представители гуманоидной расы Наави. Наави составляют 80% от всего населения Виценции. Из людей 40% заняты обслуживанием рудника, остальные добывают тетаниум. Сколько людей добывают тетаниум?
Решение:
В первую очередь нужно найти в численном виде количество людей и количество Наави. Так, 80% от 200 000 будет равняться 160 000. Столько представителей гуманоидной расы проживает на Виценции. Количество людей, соответственно, равняется 40 000. Из них 40%, то есть 16 000, обслуживают рудник. Значит, 24 000 людей занимаются добычей тетаниума.
Расчет простых процентов за период в несколько месяцев
Формула простых процентов в этом случае будет иметь видP=P*(1+n/100*m/12)здесь обозначено m – количество месяцев (month).
Задача 3. Вкладчик разместил сумму размером 1600 рублей в банк на один год, однако ему пришлось забрать деньги через семь месяцев. Процентная ставка при досрочном снятии депозита составляет 9 % в год. Найти сумму, которую получит вкладчик.
Решение: Применяем формулу для вычислений
P=1600*(1+9/100*7/12)=1684 (рублей.) За 7 месяцев вкладчик получит 1684 рублей. Из приведенной формулы достаточно просто получить все необходимые величины для обратной задачи. Количество месяцев определяют по формулеm= (P/P-1)/n*100*12
а процентную ставку находят из зависимостиn= (P/P-1)/m*100*12
Как посчитать проценты: примеры
Основные определения
Когда мы сравниваем разные части целого, мы используем такие понятия, как половина (1/2), треть (1/3), четверть (1/4). Это удобно: отрезать половину пирога, пройти треть пути, закончить первую четверть в школе.
Чтобы сравнивать сотые доли, придумали процент (1/100): с латинского языка — «за сто».
Процент — это одна сотая часть от любого числа. Обозначается вот так: %.
Чтобы узнать, как перевести проценты в дробь, нужно убрать знак % и разделить число на 100, как в примере выше.
А если нужно перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Например:
0,18 = 0,18 · 100% = 18%.
А вот, как перевести проценты в десятичную дробь — обратным действием:
18 : 100 = 0,18.
Выразить дробь в процентах просто. Для перевода сначала превратим её в десятичную дробь, а потом используем предыдущее правило:
В детской школе Skysmart ученикам помогает считать проценты веселый енот Макс. Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем. А еще развивающие игры, квесты и головоломки на любой возраст и уровень.
Заключение
Используйте силу сложного процента для создания личного капитала. Чем раньше начнете, тем быстрее он сформируется и станет обеспечивать вас и ваших детей. Время и дисциплина – наши помощники.
Поэтому так важно уже в подростковом возрасте объяснять, что и как работает в мире финансов. У молодых людей есть достаточно времени, чтобы обеспечить свою пенсию
Начать можно с небольших, но регулярных сумм, а потом увеличивать размер инвестиций, чтобы быстрее достичь финансовых целей. А вы верите в то, что государство придумает, как вас обеспечить в старости? Или уже начали сами строить свое будущее?