Что такое импульсный блок питания (ибп) и как он работает

Как повысить производительность компьютера

Общие рекомендации по ремонту блока питания телевизора

Итак, пошаговая инструкция ремонт импульсного блока питания:

  1. Включаем телевизор, убеждаемся, что он не работает, что индикатор дежурного режима не горит. Если он горит, значит дело, скорее всего, не в блоке питания. На всякий случай надо будет проверить напряжение питания строчной развертки.
  2. Выключаем телевизор, разбираем его.
  3. Проводим внешний осмотр платы телевизора, особенно участка, где размещен блок питания. Иногда могут быть обнаружены вспучившиеся конденсаторы, обгоревшие резисторы и другое. Надо будет в дальнейшем проверить их.
  4. Внимательно смотрим пайки, особенно трансформатора, ключевого транзистора/микросхемы, дросселей.
  5. Проверяем цепь питания: прозваниваем шнур питания, предохранитель, выключатель питания (если он есть), дроссели в цепи питания, выпрямительный мост. Часто при неисправном ИБП предохранитель не сгорает — просто не успевает. Если пробивается ключевой транзистор, скорее сгорит балластное сопротивление, чем предохранитель. Бывает, что горит предохранитель из-за неисправности позистора, который управляет размагничивающим устройством (петлей размагничивания). Обязательно проверьте на короткое замыкание выводы конденсатора фильтра сетевого питания, не выпаивая его, так как таким образом часто можно проверить на пробой выводы коллектор – эмиттер ключевого транзистора или микросхемы, если в нее встроен силовой ключ. Иногда питание на схему подается с конденсатора фильтра через балластные сопротивления и в случае их обрыва надо проверять на пробой непосредственно на электродах ключа.
  6. Проверяем остальные детали блока — диоды, транзисторы, некоторые резисторы. Сначала проверку производим без выпаивания детали, выпаиваем только когда возникло подозрение, что деталь может быть неисправна. В большинстве случаев такой проверки достаточно. Часто обрываются балластные сопротивления. Балластные сопротивления имеют малую величину (десятые Ома, единицы Ом) и предназначены для ограничения импульсных токов, а также для защиты в качестве предохранителей.
  7. Смотрим, нет ли замыканий во вторичных цепях питания — для этого проверяем на короткое замыкание выводы конденсаторов соответствующих фильтров на выходах выпрямителей.

Включаем. На этом этапе возможны три варианта:

  1. Лампочка ярко вспыхнула, затем притухла, появился растр. Или загорелась индикация дежурного режима. В обоих случаях надо замерить напряжение, питающее строчную развертку — для разных телевизоров оно различно, но не больше 125 Вольт. Часто его величина написана на печатной плате, иногда возле выпрямителя, иногда возле ТДКС. Если оно завышено до 150–160 Вольт, а телевизор находится в дежурном режиме, то переведите его в рабочий режим. В некоторых телевизорах допускается завышение напряжений на холостом ходу (когда строчная развертка не работает). Если в рабочем режиме напряжение завышено, проверьте электролитические конденсаторы в блоке питания только методом замены на заведомо исправный. Дело в том, что часто электролитические конденсаторы в ИБП теряют частотные свойства и на частоте генерации перестают выполнять свои функции несмотря на то, что при проверке тестером методом заряда-разряда конденсатор вроде бы исправен. Также может быть неисправна оптопара (если она есть) или цепи управления оптопарой. Проверьте, регулируется ли выходное напряжение внутренней регулировкой (если таковая имеется). Если не регулируется, то надо продолжить поиск неисправных деталей.
  2. Лампочка ярко вспыхнула и погасла. Ни растра, ни индикации дежурного режима не появилось. Это говорит о том, что импульсный блок питания не запускается. Надо измерить напряжение на конденсаторе сетевого фильтра, оно должно быть 280–300 Вольт. Если его нет — иногда ставят балластное сопротивление между мостом сетевого выпрямителя и конденсатором. Еще раз проверить цепи питания и выпрямителя. Если напряжение занижено, может быть оборван один из диодов моста сетевого выпрямителя или, что встречается чаще, потерял емкость конденсатор фильтра сетевого питания. Если напряжение в норме, то нужно еще раз проверить выпрямители вторичных источников питания, а также цепь запуска. Цепь запуска у простых телевизоров состоит из нескольких резисторов, включенных последовательно. Проверяя цепь, надо измерять падение напряжения на каждом из них, измеряя напряжение непосредственно на выводах каждого резистора.
  3. Лампочка горит на полную яркость. Немедленно выключите телевизор. Заново проверьте все элементы. И помните — чудес в радиотехнике не бывает, значит вы где-то что-то упустили, не все проверили.

ИБП

Описание

В продолжительной поездке на личном автомобиле или отдыхая «дикарем» на природе, неплохо иметь с собой домашние электрооборудование, например, фен, электрическую бритву, фото или видеокамеру. Но из-за отсутствия розеток невозможно обеспечить питание приборов от обычной сети.

Единственным источником энергии в этом случае могут быть только автомобильные аккумуляторы, но их постоянного напряжения в 12 вольт не хватит для домашних устройств, работающих от переменного тока 220 вольт. Налицо полная несовместимость по сразу двум основным параметрам.

Но не стоит отчаиваться, выход из такой ситуации есть – это использование небольшого импульсного преобразователя тока. Он поможет превратить «воду в вино», то есть 12 вольт напряжения аккумулятора, в ток, требуемый для работы всех приборов − 220 вольт.

Принцип работы

Принцип его работы заключается в конвертировании переменного напряжения из электросети, имеющее частоту 50 Гц в аналогичное прямоугольного типа. Затем оно подвергается трансформации для достижения определенных значений, выпрямляется и отфильтровывается. Такой транзистор повышенной мощности, исполняющий одновременно роль импульсного трансформатора и ключа, преобразует напряжение тока.

По схеме они бывают двух типов: управляемые извне, внедрены в большинстве электроприборов и автогенераторы импульсного типа.

Также такие трансформаторы выпускаются разных размеров и мощностей в зависимости от специфики применения, но габариты в них не главное так, как эффективность таких устройств повышается по мере нарастания частоты, увеличение которой позволяет серьезно уменьшить размер и вес стального сердечника. Они, как правило, работают в частотном диапазоне от 18 до 50 кГц.

Область применения

Область применения импульсных преобразователей питания для бытового использования постоянно ширится. Они сегодня используются для обеспечения энергией всех приборов бытовой и вычислительной техники, а также в устройствах бесперебойного питания и зарядных устройствах для АКБ разного назначения, питания низковольтных осветительных систем и других нужд.

Часто приобретение такого устройства заводской сборки не очень оправдано, по соображениям экономии или с точки зрения специфики технических параметров требуемого агрегата. В этом случае собственноручное сооружение импульсного преобразователя может быть лучшим вариантом. Такой подход, как правило, более рационален благодаря широкому выбору недорогих комплектующих.

Чем отличается от трансформаторного блока питания

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность

Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц

Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Аппараты для лечения импульсными токами

Для лечения диадинамическими токами имеются отечественные аппараты СНИМ-1, Модель-717, Тонус-1 и Тонус-2. Импульсы тока с частотой 50 и 100 гц в аппаратах получают путем одно- и двухполупериодного выпрямления сетевого переменного тока.

Рис. 3. Аппарат СНИМ-1 для лечения диадинамическими токами (импульсные токи с частотой 50 и 100 гц).

В схему аппаратов, кроме выпрямителей, входит генератор импульсов прямоугольной формы с мультивибратором (электронное устройство, с помощью к-рого получают И. т. с широким диапазоном частот и с формой, близкой к прямоугольной). Этот ток затем в аппарате используется для получения И. т. полусинусоидальной формы с постепенным спадом импульса. Аппарат СНИМ-1 (рис. 3) генерирует семь разновидностей токов: однотактный и двухтактный непрерывные и волновые токи, токи в ритме синкопа (чередование однотактного непрерывного с паузой), токи «короткий и длинный период» (чередование одно- и двухтактного непрерывных токов в различных временных соотношениях).

Все токи, кроме непрерывных, могут использоваться в двух формах посылок — «постоянной» и «переменной». При «постоянной» форме токи имеют постоянные заданные параметры. При «переменной» — некоторые параметры токов (длительность периода посылки, повышения и снижения амплитуды импульсов) можно в определенных пределах изменять. Это позволяет значительно расширить лечебное применение диадинамических токов, в частности использовать их для обезболивания у больных с непереносимостью непрерывных токов и для электро-стимуляции мышц при заболеваниях внутренних органов и поражениях периферических нервов. Мощность, потребляемая аппаратом из сети, 60 вт, вес 12 кг. Модель-717 — портативный аппарат, генерирующий те же разновидности токов, что и СНИМ-1, в «постоянной» форме посылок. Потребляемая аппаратом мощность 35 вт, вес 4 кг. Аппарат Тонус-1 используется в стационарных условиях и на дому; генерирует все разновидности токов, что и описанные выше аппараты, а также однотактный и двухтактный токи в новых разнообразных сочетаниях. Форма посылок — «постоянная». Потребляемая аппаратом мощность 25 вт, вес 7 кг. Зарубежные аппараты для лечения диадинамическими токами — Д падинам и к (ПНР), Бипульсатор (НРБ) и др.— генерируют диадинамический и гальванический токи, которые могут использоваться раздельно и в сочетании друг с другом. Форма посылок — «постоянная».

Рис. 4. Аппарат Амплипульс-4 для лечения синусоидальными модулированными токами (импульсные токи с частотой 5000 гц).

Для амплипульстерапии применяют отечественные аппараты Амплипульс-3Т и Амплипульс-4 (рис. 4). Схема аппаратов включает генератор несущих синусоидальных колебаний средней частоты (5000 гц), генератор модулирующих колебаний низкой частоты (10— 150 гц), генератор посылок и блок питания. Амплипульс-3Т генерирует синусоидальные модулированные колебания непрерывные («постоянная модуляция») и в чередовании с паузой («посылка — пауза») с импульсами других частот («перемежающиеся частоты») или с смодулированными колебаниями («посылка — несущая частота»). Длительность посылок может регулироваться от 1 до 5 сек. Токи используют в режиме переменного и постоянного тока. Глубину модуляции (степень ее выраженности) можно изменять. С увеличением глубины модуляции усиливается возбуждающее действие токов. Это учитывают при методике леч. использования аппарата. Потребляемая аппаратом мощность не более 170 вт, вес 17 кг. Амплипульс-4 — портативная модель аппарата (вес 7,5 кг); генерирует те же разновидности токов, что и Амплипульс-3, но с меньшими модификациями.

В отечественном аппарате для флюктуоризации АСБ-2 источником напряжения переменного тока звуковой частоты (от 100 до 2000 гц) является германиевый диод. Напряжение в аппарате подается в трех вариантах: в переменной, частично «выпрямленной» и постоянной полярности (соответственно ток № 1, 2, 3). Для применения в стоматологии к аппарату придается набор внутриротовых электродов. Вес аппарата 6,5 кг, потребляемая мощность 50 вт.

Все описанные аппараты, за исключением Тонус-1 и Амплипульс-4, нуждаются в заземлении при использовании.

Аппараты, генерирующие И. т. с прямоугольной, треугольной и экспоненциальной формой импульсов,— см. Электросон, Электродиагностика, Электростимуляция. Серийного выпуска отечественных аппаратов для лечения интерференционными токами нет, т. к. аппараты типа Амплипульс эффективнее. Аппараты для электронаркоза интерференционными токами — см. Электронаркоз.

⇡#Методика тестирования блоков питания

Одним из основных параметров БП является стабильность напряжений, которая находит отражение в т.н. кросс-нагрузочной характеристике. КНХ представляет собой диаграмму, в которой на одной оси отложен ток или мощность на шине 12 В, а на другой – совокупный ток или мощность на шинах 3,3 и 5 В. В точках пересечения при разных значениях обеих переменных определяется отклонение напряжения от номинала на той или иной шине. Соответственно, мы публикуем две разные КНХ – для шины 12 В и для шины 5/3,3 В.

Цвет точки означает процент отклонения:

  • зеленый: ≤ 1%;
  • салатовый: ≤ 2%;
  • желтый: ≤ 3%;
  • оранжевый: ≤ 4%;
  • красный: ≤ 5%.
  • белый: > 5% (не допускается стандартом ATX).

Пример отличной КНХ (Corsair HX750i)

Посредственная КНХ (Antec VP700P)

Для получения КНХ используется сделанный на заказ стенд для тестирования блоков питания, который создает нагрузку за счет рассеивания тепла на мощных полевых транзисторах.

Стенд для тестирования БП

Другой не менее важный тест – определение размаха пульсаций на выходе БП. Стандарт ATX допускает пульсации в пределах 120 мВ для шины 12 В и 50 мВ – для шины 5 В. Различают высокочастотные пульсации (на удвоенной частоте ключа основного преобразователя) и низкочастотные (на удвоенной частоте питающей сети).

Этот параметр мы измеряем при помощи USB-осциллографа Hantek DSO-6022BE при максимальной нагрузке на БП, заданной спецификациями. На осциллограмме ниже зеленый график соответствует шине 12 В, желтый – 5 В. Видно, что пульсации находятся в пределах нормы, и даже с запасом.

Высокочастотные пульсации: хороший результат (AeroCool KCAS-650M)

Низкочастотные пульсации: хороший результат (AeroCool KCAS-650M)

Для сравнения приводим картину пульсаций на выходе БП старого компьютера. Этот блок изначально не был выдающимся, но явно не стал лучше от времени

Судя по размаху низкочастотных пульсаций (обратите внимание, что деление развертки напряжения увеличено до 50 мВ, чтобы колебания поместились на экран), сглаживающий конденсатор на входе уже пришел в негодность. Высокочастотные пульсации на шине 5 В находятся на грани допустимых 50 мВ

Высокочастотные пульсации: на грани допустимого (старый БП)

Низкочастотные пульсации: ужасно (старый БП)

В следующем тесте определяется КПД блока при нагрузке от 10 до 100% от номинальной мощности (путем сравнения мощности на выходе с мощностью на входе, измеренной при помощи бытового ваттметра). Для сравнения на графике приводятся критерии различных категорий 80 PLUS. Впрочем, большого интереса в наши дни это не вызывает. На графике приведены результаты топового БП Corsair в сравнении с весьма дешевым Antec, а разница не то чтобы очень велика.

График КПД

Более насущный для пользователя вопрос – шум от встроенного вентилятора. Непосредственно измерить его вблизи от ревущего стенда для тестирования БП невозможно, поэтому мы измеряем скорость вращения крыльчатки лазерным тахометром – также при мощности от 10 до 100%. На нижеприведенном графике видно, что при низкой нагрузке на этот БП 135-миллиметровый вентилятор сохраняет низкие обороты и вряд ли слышен вообще. При максимальной нагрузке шум уже можно различить, но уровень все еще вполне приемлемый.

График скорости вращения вентилятора (AeroCool KCAS-650M)

Функциональные схемы по типу цепи управления

Какой стабилизатор напряжения лучше

По виду управляющей цепи можно выделить несколько рабочих схем, включающих в себя:

  • триггер Шмитта;
  • ШИМ – широтно-импульсную модуляцию;
  • ЧИМ – частотно-импульсную модуляцию.

Важно! Импульсные стабилизаторы – это устройство с автоматическим регулированием, ориентирующееся на опорное напряжение, которое служит эталонным параметром для схемы регулирования. Блок-схемы ИПН с триггером Шмитта и ШИМ


Блок-схемы ИПН с триггером Шмитта и ШИМ

С триггером Шмитта

При таком построении схемы стабилизации верхний и нижний пороги срабатывания триггера сравниваются с Uвх. Для этой цели используется компаратор – устройство сравнения. Ключ размыкается в момент, когда выходное напряжение сравняется с напряжением срабатывания триггера (Umax). Энергия, накопившаяся за это время, выдаётся на нагрузку, и Uвых после этого спадает. Как только её величина достигнет Umin (нижнего порога), триггер переключается, замыкая ключ.

Такой способ называется стабилизацией с двухпозиционной регулировкой или релейной. Схемы с триггером Шмитта имеют на выходе устройства напряжения с величиной пульсации, обусловленной разностью порогов срабатывания. Эту пульсацию практически устранить невозможно.

В ИС с триггером Шмитта частотное преобразование зависит от Uвх и Iн (тока нагрузки) и является переменным.

С широтно-импульсной модуляцией

На выходе таких схем получают Uср (среднее), на которое влияют скважность импульсов и Uвх. Операционный усилитель (ОУ) представляет собой схему сравнения Uвых и Uоп (опорного) путём вычитания и последующего усиления

Результат поступает на модулятор, который подстраивает свои параметры в зависимости от этого результата.

Модулятор изменяет (в сторону увеличения) отношение времени, при котором ключ открыт, к периоду тактового импульса генератора, если Uвых < Uоп.

Схема добивается такого управления ключом, чтобы разность между Uвых и Uоп сводилась к минимуму, когда происходит изменение Uвх или ток через нагрузку (Iн).

С частотно-импульсной модуляцией

Подобные сборки отличаются тем, что скважность импульсов (частота) напрямую зависит от понижения Uвх или увеличения Iн. При этом длительность отпирающего ключ импульса неизменна

Частота подачи импульсов подчинена сигналу разности Uвых и Uоп. Моностабильный мультивибратор, имеющий управляемую запускающую частоту, может смело справиться с подачей команд на ключ.


Моностабильный мультивибратор на транзисторах

Как работают импульсные блоки питания

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.

Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.

Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.

Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.

После силового трансформатора наступает очередь работы выходного выпрямителя.

Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.

Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.

Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.

Накопительная емкость сглаживает пульсации.

Генератор инвертора на основе силового ключевого транзистора в комплекте с импульсным трансформатором выдает напряжение на выходной выпрямитель с диодами, конденсаторами и дросселями.

Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.

⇡#Линейный и импульсный источники питания

Начнем с основ. Блок питания в компьютере выполняет три функции. Во-первых, переменный ток из бытовой сети электропитания нужно преобразовать в постоянный. Второй задачей БП является понижение напряжения 110-230 В, избыточного для компьютерной электроники, до стандартных значений, требуемых конвертерами питания отдельных компонентов ПК, – 12 В, 5 В и 3,3 В (а также отрицательные напряжения, о которых расскажем чуть позже). Наконец, БП играет роль стабилизатора напряжений.

Есть два основных типа источников питания, которые выполняют перечисленные функции, – линейный и импульсный. В основе простейшего линейного БП лежит трансформатор, на котором напряжение переменного тока понижается до требуемого значения, и затем ток выпрямляется диодным мостом.

Однако от БП требуется еще и стабилизация выходного напряжения, что обусловлено как нестабильностью напряжения в бытовой сети, так и падением напряжения в ответ на увеличение тока в нагрузке.

Чтобы компенсировать падение напряжения, в линейном БП параметры трансформатора рассчитываются так, чтобы обеспечить избыточную мощность. Тогда при высоком токе в нагрузке будет наблюдаться требуемый вольтаж. Однако и повышенное напряжение, которое возникнет без каких-либо средств компенсации при низком токе в полезной нагрузке, тоже неприемлемо. Избыточное напряжение устраняется за счет включения в цепь неполезной нагрузки. В простейшем случае таковой является резистор или транзистор, подключенный через стабилитрон (Zener diode). В более продвинутом – транзистор управляется микросхемой с компаратором. Как бы то ни было, избыточная мощность просто рассеивается в виде тепла, что отрицательно сказывается на КПД устройства.

Пример линейного источника питания со стабилизатором. Избыточная мощность рассеивается на транзисторе Q1

В схеме импульсного БП возникает еще одна переменная, от которой зависит напряжение на выходе, в дополнение к двум уже имеющимся: напряжению на входе и сопротивлению нагрузки. Последовательно с нагрузкой стоит ключ (которым в интересующем нас случае является транзистор), управляемый микроконтроллером в режиме широтно-импульсной модуляции (ШИМ)

Чем выше длительность открытых состояний транзистора по отношению к их периоду (этот параметр называется duty cycle, в русскоязычной терминологии используется обратная величина – скважность), тем выше напряжение на выходе. Из-за наличия ключа импульсный БП также называется Switched-Mode Power Supply (SMPS)

Через закрытый транзистор ток не идет, а сопротивление открытого транзистора в идеале пренебрежимо мало. В действительности открытый транзистор обладает сопротивлением и рассеивает какую-то часть мощности в виде тепла. Кроме того, переход между состояниями транзистора не идеально дискретный. И все же КПД импульсного источника тока может превышать 90%, в то время как КПД линейного БП со стабилизатором в лучшем случае достигает 50%.

Простейшая схема импульсного преобразователя AC/DC с трансформатором

Другое преимущество импульсных источников питания состоит в радикальном уменьшении габаритов и массы трансформатора по сравнению с линейными БП такой же мощности. Известно, что чем выше частота переменного тока в первичной обмотке трансформатора, тем меньше необходимый размер сердечника и число витков обмотки. Поэтому ключевой транзистор в цепи размещают не после, а до трансформатора и, помимо стабилизации напряжения используют для получения переменного тока высокой частоты (для компьютерных БП это от 30 до 100 кГц и выше, а как правило – около 60 кГц). Трансформатор, работающий на частоте электросети 50-60 Гц, для мощности, требуемой стандартным компьютером, был бы в десятки раз массивнее.

Линейные БП сегодня применяются главным образом в случае маломощных устройств, когда относительно сложная электроника, необходимая для импульсного источника питания, составляет более чувствительную статью расходов в сравнении с трансформатором. Это, к примеру, блоки питания на 9 В, которые используются для гитарных педалей эффектов, а когда-то – для игровых приставок и пр. А вот зарядники для смартфонов уже сплошь импульсные – тут расходы оправданны. Благодаря существенно меньшей амплитуде пульсаций напряжения на выходе линейные БП также применяются в тех областях, где это качество востребованно.

Управление по напряжению (Voltage Mode)

В этом режиме скважность ШИМ сигнала, управляющего силовыми ключами, определяется непосредственно выходным напряжением. При гистерезисном управлении, если напряжение на выходе ниже нормы – идет «накачка» источника

Если напряжение на выходе больше порога – компаратор блокирует управление силовым ключом, идет разряд выходной накопительной емкости. В англоязычной литературе такой режим называют «hiccup-mode» – «режим с икотой»

При гистерезисном управлении, если напряжение на выходе ниже нормы – идет «накачка» источника. Если напряжение на выходе больше порога – компаратор блокирует управление силовым ключом, идет разряд выходной накопительной емкости. В англоязычной литературе такой режим называют «hiccup-mode» – «режим с икотой».

Данный режим используется сравнительно редко, так как сопровождается большими пульсациями выходного напряжения и требует накопительного конденсатора сравнительно высокой емкости.
Рисунок 5 демонстрирует принцип работы режима управления по напряжению с гистерезисным управлением. Здесь и далее не показана выходная часть источника, так как определяется топологией, выходной мощностью и др. Для иллюстрации принципа работы ШИМ-контроллера иногда будет показан пример с выходной частью.

Рис. 5а. Первая схема – с фиксированным выходным напряжением, вторая – с регулировкой выходного напряжения.

Рис. 5б. Диаграммы выхода ШИМ и выхода компаратора.

Рис. 6. Пример выходного каскада повышающего импульсного источника питания, подключенного к ШИМ контроллеру (см.рис.5).

Конфигурируемые логические ячейки (CLC) на рис .5 можно включить как элемент И. Для предотвращения высокочастотной генерации от компаратора его выход целесообразно пропустить через еще одну CLC – D-триггер с синхронизацией от сигнала ШИМ

В этом случае получим два «бонуса» — отсутствие возникновения высокочастотной генерации и неизменность скважности управляющего ШИМ (см. пояснения на рис

7). Подробнее о конфигурируемых логических ячейках см. в статье «Конфигурируемые логические ячейки в PIC микроконтроллерах» .

Рис.7.а. Укорочение управляющих ШИМ импульсов, возможность появления высокочастотной генерации

Рис. 7.б. Синхронизация сигналов позволяет предотвратить укорочение ШИМ импульсов

Рис. 8. Синхронизация сигналов для предотвращения генерации и укорочения ШИМ.

Как подключить?

Рассмотрим подробнее, как подсоединить БП. В большинстве случаев в активную антенну усилитель уже вмонтирован. А вот в пассивной – его нет. Чтобы его подключить, в первую очередь необходимо собрать антенный кабель со штекером, который будет предназначен для данных целей. Рассмотрим, как это сделать.

Сначала следует подготовить сам кабель, то есть зачистить его. Для этого острым канцелярским ножом либо скальпелем выполняют тонкий разрез по окружности на удалении 1,5 см от края кабеля

При выполнении этой работы очень важно быть аккуратным и постараться не повредить волоски экранированной оплётки, расположенной сразу под изоляционным слоем

После того как эти действия будут выполнены, упомянутые волоски нужно осторожно отогнуть, а расположенный около них кусок фольги убрать

Отступив от загнутого края оплетки примерно 5 мм, необходимо сделать ещё один срез по окружности. Он необходим для того, чтобы удалить внутренний изоляционный слой. После этого кабель, подготовленный к монтажу, следует просунуть под соответствующие крепежи в коробке БП и затянуть винтами.

Обращаем особое внимание на то, что когда подключается провод, его металлизированная оплетка непременно должна иметь контакт с залуженной площадкой, которая является обязательным элементом конструкции любого корпуса БП. Если этого не сделать, то питание на антенну попросту не будет поступать

Нужно учесть и тот факт, что кабельная оплетка ни в коем случае не должна соприкасаться с центральной жилой самого провода. Если это случится, то произойдет короткое замыкание, и индикатор работы модуля не будет функционировать.

Для сведения: при корректном подсоединении блока питания с самим антенным кабелем после выполнения всех необходимых настроек телевизор обычно показывает намного больше каналов, чем прежде.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector